• Login
    View Item 
    •   Plemochoe Home
    • Articles / Άρθρα
    • School of Sciences
    • Department of Life Sciences
    • View Item
    •   Plemochoe Home
    • Articles / Άρθρα
    • School of Sciences
    • Department of Life Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of PlemochoeCommunities & CollectionsTitlesAuthorsBy Issue DateSubjectsThis CollectionTitlesAuthorsBy Issue DateSubjects

    My Account

    LoginRegister

    Epithelial-mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: Prognostic value and prospective role in ovarian cancer therapeutics

    Thumbnail
    View/Open
    Publisher version (Access full-text PDFOpen Access)
    Publisher version (Check access options)
    Check access options
    Date
    2014-09-01
    Author
    Koutsaki, Maria
    Spandidos, Demetrios A.
    Zaravinos, Apostolos
    Metadata
    Show full item record
    Abstract
    MicroRNAs (miRNAs) are a family of short ribonucleic acids found to play a pivotal role in cancer pathogenesis. MiRNAs are crucial in cellular differentiation, growth, stress response, cell death and other fundamental cellular processes, and their involvement in ovarian cancer has been recently shown. They can repress the expression of important cancer-related genes and they can also function both as oncogenes and tumour suppressor genes. During epithelial-mesenchymal transition (EMT), epithelial cells lose their cell polarity and cell-cell adhesion and gain migratory and invasive properties. In the ovarian surface epithelium, EMT is considered the key regulator of the post-ovulatory repair process and it can be triggered by a range of environmental stimuli. The aberrant expression of the miR-200 family (miR-200a, miR-200b, miR-200c, miR-141 and miR-429) in ovarian carcinoma and its involvement in ovarian cancer initiation and progression has been well-demonstrated. The miR-200 family members seem to be strongly associated with a pathologic EMT and to have a metastasis suppressive role. MiRNA signatures can accurately distinguish ovarian cancer from the normal ovary and can be used as diagnostic tools to predict the clinical response to chemotherapy. Recent evidence suggests a growing list of new miRNAs (miR-187, miR-34a, miR-506, miRNA-138, miR-30c, miR-30d, miR-30e-3p, miR-370 and miR-106a, among others) that are also implicated in ovarian carcinoma-associated EMT, either enhancing or suppressing it. MiRNA-based gene therapy provides a prospective anti-tumour approach for integrated cancer therapy. The aim of nanotechnology-based delivery approach for miRNA therapy is to overcome challenges in miRNA delivery and to effectively encourage the reprogramming of miRNA networks in cancer cells, which may lead to a clinically translatable miRNA-based therapy to benefit ovarian cancer patients.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84904763687&origin=inward
    https://repo.euc.ac.cy/handle/123456789/565
    DOI
    10.1016/j.canlet.2014.05.022
    Collections
    • Department of Life Sciences

    entitlement

    Contact us

    Tel: +357 22 713000
    Fax: +357 22 662051
    Use contact form

    Find us

    European University Cyprus
    6, Diogenis Str., Engomi,
    P.O. Box: 22006, 1516 Nicosia-Cyprus
    View location map

    Connect with us

    Send your request to us

    Request Info
     
    • Contact us
    • Find us
    • Connect with us
    • Request Info
    © 2017 European University Cyprus, All Rights Reserved