Show simple item record

dc.contributor.authorCaraher, M. Clare
dc.contributor.authorSophocleous, Antonia
dc.contributor.authorBeattie, James Renwick
dc.contributor.authorO'Driscoll, Olive M.
dc.contributor.authorCummins, Niamh Maria
dc.contributor.authorBrennan, Orlaith
dc.contributor.authorO'Brien, Fergal Joseph
dc.contributor.authorRalston, Stuart H.
dc.contributor.authorBell, Steven E.J.
dc.contributor.authorTowler, Mark R.
dc.contributor.authorIdris, Aymen I.
dc.creatorCaraher, M. Clare
dc.date.accessioned2019-02-23T08:46:41Z
dc.date.available2019-02-23T08:46:41Z
dc.date.issued2018-02-01
dc.identifierSCOPUS_ID:85034108197
dc.identifier.issn09254439
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85034108197&origin=inward
dc.identifier.urihttps://repo.euc.ac.cy/handle/123456789/1872
dc.description.abstractOsteoporosis is a common disease characterised by reduced bone mass and an increased risk of fragility fractures. Low bone mineral density is known to significantly increase the risk of osteoporotic fractures, however, the majority of non-traumatic fractures occur in individuals with a bone mineral density too high to be classified as osteoporotic. Therefore, there is an urgent need to investigate aspects of bone health, other than bone mass, that can predict the risk of fracture. Here, we successfully predicted association between bone collagen and nail keratin in relation to bone loss due to oestrogen deficiency using Raman spectroscopy. Raman signal signature successfully discriminated between ovariectomised rats and their sham controls with a high degree of accuracy for the bone (sensitivity 89%, specificity 91%) and claw tissue (sensitivity 89%, specificity 82%). When tested in an independent set of claw samples the classifier gave 92% sensitivity and 85% specificity. Comparison of the spectral changes occurring in the bone tissue with the changes occurring in the keratin showed a number of common features that could be attributed to common changes in the structure of bone collagen and claw keratin. This study established that systemic oestrogen deficiency mediates parallel structural changes in both the claw (primarily keratin) and bone proteins (primarily collagen). This strengthens the hypothesis that nail keratin can act as a surrogate marker of bone protein status where systemic processes induce changes.
dc.relation.ispartofBiochimica et Biophysica Acta - Molecular Basis of Disease
dc.titleRaman spectroscopy predicts the link between claw keratin and bone collagen structure in a rodent model of oestrogen deficiency
elsevier.identifier.doi10.1016/j.bbadis.2017.10.020
elsevier.identifier.eid2-s2.0-85034108197
elsevier.identifier.piiS0925443917303848
elsevier.identifier.scopusidSCOPUS_ID:85034108197
elsevier.volume1864
elsevier.issue.identifier2
elsevier.coverdate2018-02-01
elsevier.coverdisplaydateFebruary 2018
elsevier.openaccess1
elsevier.openaccessflagtrue
elsevier.aggregationtypeJournal


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record